### Preventive Cardiology Beyond Statins for

**Cardiovascular Risk Reduction** 

M. Wesley Milks, MD, FACC Assistant Professor of Clinical Medicine Division of Cardiovascular Medicine Department of Internal Medicine The Ohio State University Wexner Medical Center

# Introduction

#### Objectives

- 1. Identify clinical scenarios in which statins and/or non-statin lipid lowering treatments are indicated
- 2. Describe the mechanism of action of and indications for PCSK9 inhibitors, SGLT2 inhibitors, and high dose <u>omega-3-polyunsaturated fatty</u> <u>acids</u>
- No competing interests /financial relationships to disclose
- I will discuss what is currently <u>off-label use of</u> <u>icosapent ethyl</u> (Vascepa®)
- Branded Rx/OTC products shown: not an endorsement









| Treatment                          | algorithm<br>(20                                                             | : NLA Par<br>15)                                    | t 1 / Part 2      |
|------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------|-------------------|
| 0-1                                | Major ASCVD ⊨<br>HTN<br>Age (M≥45, F≥<br>Low HDL<br>EmHx early Cl<br>Smoking | risk factors ( <u>HA</u><br>:55 y)<br>HD (M<55, F<6 | <u>LFS)</u><br>5) |
| ≥3                                 |                                                                              |                                                     |                   |
|                                    | Risk Category                                                                | Non-HDL-C goal                                      | LDL-C goal        |
|                                    | Low                                                                          | < 130 mg/dl                                         | < 100             |
|                                    | Moderate                                                                     | < 130                                               | < 100             |
|                                    | High                                                                         | < 130                                               | < 100             |
|                                    | Very High                                                                    | < 100                                               | < 70              |
|                                    | ASCVD, or [Diabe                                                             | etes mellitus + end                                 | organ damage]     |
| Jacobson TA, Ito MK, Maki KC, et a | al. J Clin Lipidology 2015;9:129-1                                           | 169.                                                |                   |



| LDL-C vs                                             | . No                              | n-HC                            | DL-C                            |
|------------------------------------------------------|-----------------------------------|---------------------------------|---------------------------------|
|                                                      | Lipoprotein                       | Cholesterol                     | TG                              |
|                                                      |                                   | (approx. % of<br>lipid content) | (approx. % of<br>lipid content) |
|                                                      | LDL                               | 70                              | 30                              |
| VLDL                                                 | VLDL or<br>Chylomicron<br>remnant | 20                              | 80                              |
| СМ                                                   | Chylomicron                       | 5                               | 95                              |
| Walker HK, Hall WD, Hurst JW, eds. Chapter 31, Chole | esterol, Triglycerides, a         | and Associated Lipoprote        | ins. Butterworths 1990.         |

| LDL-                                       | C vs.                              | Non-H                            | DL-C                         |
|--------------------------------------------|------------------------------------|----------------------------------|------------------------------|
| • We live in a                             | n LDL-C parad                      | igm. Why?                        | С тс                         |
| Diagnosis <del>→</del><br>↓ Lipids (mg/dl) | Normal                             | Familial<br>Hyperchol.           | Metabolic<br>Syndrome / DM   |
| Total-C                                    | 158                                | 342                              | 318                          |
| HDL-C                                      | 59                                 | 49                               | 23                           |
| LDL-C                                      | 88                                 | 280                              | ?                            |
| Triglycerides                              | 53                                 | 67                               | 1,621                        |
| Non-HDL-C                                  | 99                                 | 293                              | 295                          |
| Depiction<br>LDL                           | -                                  |                                  |                              |
| VLDL / CM remn.                            |                                    |                                  |                              |
| Walker HK, Hall WD, Hurst JW               | , eds. Chapter 31, Cholesterol, Tr | iglycerides, and Associated Lipo | proteins. Butterworths 1990. |

| LDL-C       | Non-<br>HDL-C | N<br>(MACE) | N<br>(Total) | HR<br>(95% CI)      |                        |
|-------------|---------------|-------------|--------------|---------------------|------------------------|
| ≥ 100 mg/dl | ≥ 130 mg/dl   | 1,877       | 10,419       | 1.21<br>(1.13-1.29) | -                      |
| ≥ 100 mg/dl | < 130 mg/dl   | 467         | 2,873        | 1.02<br>(0.92-1.12) |                        |
| < 100 mg/dl | ≥ 130 mg/dl   | 283         | 1,435        | 1.32<br>(1.17-1.50) |                        |
| < 100 mg/dl | < 130 mg/dl   | 2,760       | 23,426       | 1.00<br>(Reference) | 1.0 1.5<br>HR (95% CI) |

• HRs adjusted for sex, age, smoking, DM, SBP, and trial

Boekholdt SM, Arsenault BJ, Mora S, et al. JAMA. 2012;307:1302–1309

Cited in Jacobson TA, Ito MK, Maki KC, et al. J Clin Lipidology 2015;9:129-169.



## **Preventive Cardiology**

Beyond Statins for Cardiovascular Risk Reduction

Kelly M. Bartsch, PharmD, BCPS, CLS Specialty Practice Pharmacist - Ambulatory Care The Ohio State University Wexner Medical Center

| St                                                      | atins                                                                                                                                                 |
|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Citrate<br>ATP citrate lyase<br>Acetyl-CoA              | <ul> <li>Dosing + Effects:         <ul> <li>Potency varies by statin<br/>and dose</li> <li>High intensity: &gt;50% ↓LDL-<br/>C</li> </ul> </li> </ul> |
| HMG-CoA STATINS<br>HMG-CoA reductase                    | <ul> <li>May also decrease TRG and<br/>HDL</li> <li>PO formulations</li> <li>Once daily administration*</li> <li>Newer agents can be taken</li> </ul> |
| Mevalonic acid                                          | <ul> <li>at any time of day</li> <li>Pleiotropic effects</li> <li>Adverse Effects: <ul> <li>Mvalgias, Gl upset</li> </ul> </li> </ul>                 |
| Rosuvastatin [package insert]/ AstraZeneca. Wilmington, | Drug interactions     *exception: fluvastatin DE. 11/2018. Graphic original.                                                                          |

| Stati      | ins   | – P    | oter   | ıcy                   | + Li                 | рор     | hilicity     |
|------------|-------|--------|--------|-----------------------|----------------------|---------|--------------|
| Intensity: | Lova- | Prava- | Simva- | Fluva-                | Pitava-              | Atorva- | Rosuvastatin |
| Low        | 20mg  | 20mg   | 10mg   | 40mg                  | 1mg                  |         |              |
| Mod        | 40mg  | 40mg   | 20mg   | 80mg                  | 2mg                  | 10mg    | 5mg          |
| WOO.       | 80mg  | 80mg   | 40mg   |                       | 4mg                  | 20mg    | 10mg         |
|            |       |        | (80mg) |                       |                      | 40mg    | 20mg         |
| High       |       |        |        |                       |                      | 80mg    | 40mg         |
|            |       | Lipop  | ohilic | Atorvasta<br>simvasta | atin, lovast<br>tin  | atin,   |              |
|            |       | Hydro  | philic | Pravasta<br>rosuvast  | tin,<br>atin, fluvas | tatin   |              |
|            |       |        |        |                       |                      |         |              |



























| <b>PCSK9 inhibitors</b>         |                                                                                               |                                                                                                       |  |  |  |
|---------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--|--|--|
|                                 | FOURIER                                                                                       | ODYSSEY OUTCOMES                                                                                      |  |  |  |
| Primary endpoint<br>(composite) | CV death, MI, stroke,<br>hospitalization for<br>unstable angina, or cor.<br>revascularization | CHD death, non-fatal MI,<br>fatal or non-fatal<br>ischemic stroke, or UA<br>requiring hospitalization |  |  |  |
| Treatment vs. placebo           | 9.8% vs. 11.3%                                                                                | 9.5% vs. 11.1%                                                                                        |  |  |  |
| Median follow up                | 2.2 years                                                                                     | 2.8 years                                                                                             |  |  |  |
| HR                              | 0.85                                                                                          | 0.85                                                                                                  |  |  |  |
| NNT                             | 67                                                                                            | 64                                                                                                    |  |  |  |
|                                 |                                                                                               |                                                                                                       |  |  |  |



## **Preventive Cardiology**

Beyond Statins for Cardiovascular Risk Reduction

M. Wesley Milks, MD, FACC Assistant Professor of Clinical Medicine Division of Cardiovascular Medicine Department of Internal Medicine The Ohio State University Wexner Medical Center

























































#### ω-3-poly-unsaturated fatty acids

#### Does treatment change outcomes?

| Trial                                                                                                                                      | Endpoints /<br>Mean Follow-up                                                          | Daily dose                                             | Outcome                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|
| <b>Meta-analysis</b> of 10 trials<br>Aung et al. <i>JAMA <u>Cardiol</u></i><br>2018<br>(n=77,917) prior CHD, CVA,<br>or high ASCVD risk    | Any CHD<br>(fatal/nonfatal) or<br>major vascular events<br>4.4 years                   | Generally<br><b>1 g</b><br>EPA/DHA                     | No effect                                            |
| GISSI- <u>Prevenzione</u><br>investigators <i>Lancet</i> 1999;<br>(n=11,324) with recent MI<br>(2x2 design also with vit. E)               | Death, non-fatal MI,<br>CVA<br>3.5 years                                               | <b>1 g</b><br>EPA/DHA<br>vs.<br>Placebo                | <b>Benefit</b><br>Composite RRR 10%<br>Death RRR 14% |
| JELIS<br>Yokogama et al. <i>Lancet</i> 2007<br>(n=18,645) unselected<br>hypercholesterolemic (Total-C<br>> 252 mg/dl) Japanese<br>patients | Any CHD event (CHD<br>death, SCD,<br>fatal/nonfatal MI, UA,<br>PCI, CABG)<br>4.6 years | Statin +<br>[ <b>1.8 g EPA-</b><br>only or<br>placebo] | Benefit<br>Composite RRR 19%<br>No difference in LDL |





| ω-3- | poly- | unsat  | turat | ted |
|------|-------|--------|-------|-----|
|      | fatty | / acid | S     |     |

| Antiarrhythmic or not? |                                                    |                              |                                                                            |  |
|------------------------|----------------------------------------------------|------------------------------|----------------------------------------------------------------------------|--|
|                        | Trial                                              | Dose                         | Outcomes                                                                   |  |
|                        | REDUCE-IT 2019                                     | 4 g/d EPA<br>only            | ↑47% excess atrial fib/flutter                                             |  |
|                        | Cochrane Review<br>2018<br>79 RCTs,<br>(n=112,059) | Varies<br>(0.5 to >5<br>g/d) | Marine: No difference arrhythmia<br>Plant-based (ALA): ↓21%<br>arrhythmias |  |
|                        | GISSI-HF<br>(n=6,975) with HF                      | 1 g/d mixed                  | No difference in atrial fibrillation<br>↓9% mortality; ↓8% HF admissions   |  |

 Animal studies suggest DHA may have antiarrhythmic properties in AF

Bhatt et al. New Engl J Med 2019;380(1):11-22. Abdelhamid et al. Cochrane Database Syst Rev 2018;11:CD003177. Aleksova et al. Eur J Heart Fail 2013;15(11):1289-95. Tavazzi et al. Lancet 2008;372(9645):1223-30. Ninio et al. J Cardiovasc Electrophysiol 2005 16:1189-1194.

| • | <b>ω-3-poly-unsaturated</b><br><b>fatty acids</b><br>Current Rx products and labeling |                                 |                                  |                                                                                                                                                              |  |  |  |  |
|---|---------------------------------------------------------------------------------------|---------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|   | Agent                                                                                 | Trade Name<br>Composition       | Dose                             | Labeled Indication                                                                                                                                           |  |  |  |  |
|   | Icosapent ethyl                                                                       | <u>Vascepa</u> ®                | 2 g bid<br><b>with food</b>      | <ul> <li>Significant hypertriglyceridemia (&gt;500 mg/dl) as<br/>adjunct to diet and exercise</li> </ul>                                                     |  |  |  |  |
|   | ω-3 acid ethyl<br>esters                                                              | Lovaza®<br>55% EPA /<br>45% DHA | 4 g gd or<br>2 g bid<br>+/- food | <ul> <li>Significant hypertriglyceridemia (&gt;500 mg/dl) as adjunct to diet and exercise</li> <li>For use as adjunct to simvastatin for hyper-TG</li> </ul> |  |  |  |  |
|   | ω-3 carboxylic<br>acids                                                               | Epanova®<br>Mostly EPA          | 2-4 g gd<br>+/- food             | <ul> <li>Significant hypertriglyceridemia (&gt;500 mg/dl) as<br/>adjunct to diet and exercise</li> </ul>                                                     |  |  |  |  |
|   | Source: Drug Mono                                                                     | ographs. Gold Stand             | dard. Accessed                   | 120 Jan 2019.                                                                                                                                                |  |  |  |  |





### "Nutraceuticals" and lifestyle changes

| ntervention                             | Mechanism of action                              | Dose                | Expected<br>Δ LDL-C<br>(relative) |
|-----------------------------------------|--------------------------------------------------|---------------------|-----------------------------------|
| ncreased physical activity              | Multifactorial                                   | 200-300<br>min/week | ↓ <b>~</b> 5%                     |
| Loss of body weight                     | Multifactorial                                   | ↓5% body<br>weight  | ↓ <b>3-5%</b>                     |
| Diet low in saturated and<br>trans fats | ↓LDL-C production                                |                     | ↓ <b>5-10%</b>                    |
| Viscous fiber                           | Bile acid sequestration,<br>↑satiety             | 5-10 g/day          | ↓ <b>5-20%</b>                    |
| Plant sterols/ <u>stanols</u>           | Competitive inhibition of cholesterol absorption | 2 g/day             | ↓ <b>~10%</b>                     |
|                                         | cholesterol absorption                           |                     |                                   |

| Agent     | Mechanism of action                                                                                                | Dose           | ∆ LDL-C<br>(absolut <u>e)</u> |
|-----------|--------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------|
| Berberine | Has PCSK9 inhibitory properties,<br>increases LDLR expression and<br>decreases intestinal <u>chol</u> . absorption | 300 mg/day     | ↓25 mg/dl                     |
| Artichoke | Luteolin interacts with HMG-CoA reductase, SREBPs, ACAT                                                            | 500-2,700 mg/d | ↓15 mg/dl                     |
| Garlic    | Inhibition of HMG-CoA reductase                                                                                    | 5-6 g/d        | ↓9 mg/d                       |
| Green tea | Inhibition of inducible NO synthase, inhibition of HMG-CoA reductase                                               | 170-1,200 mg/d | ↓7 mg/dl                      |



## **Take Home Points**

- Recent history of and important concepts in clinical lipidology
  - Please consider non-HDL-C as well as LDL-C lowering, especially in hypertriglyceridemics
- New ACC/AHA Blood Cholesterol guidelines
  - Goal atherogenic cholesterol levels are both motivating and evidence based
- PCSK9 inhibition: when and how?
  - FH or ASCVD and LDL-C > 70 or non-HDL-C > 100 mg/dl

